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Abstract 

We exhibit a new method to find Willmore tori and Willmore-Chen submanifolds in spaces 
endowed with pseudo-Riemannian warped product metrics, whose fibres are homogeneous spaces. 
The chief points are the invariance of the involved variational problems with respect to the conformal 
changes of the metrics on the ambient spaces and the principle of symmetric criticality. They allow 
us to relate the variational problems with that of generalized elastic curves in the conformal structure 
of the base space. Among other applications we get a rational one-parameter family of Willmore 
tori in the standard anti De Sitter 3-space shaped on an associated family of closed free elastic 
curves in the once punctured standard 2-sphere. We also obtain rational one-parameter families of 
Willmore-Chen submanifolds in standard pseudo-hyperbolic spaces. As an application of a general 
approach to our method, we give nice examples of pseudo-Riemannian 3-spaces which are foliated 
with leaves being non-trivial Willmore tori. More precisely, the leaves of this foliation are Willmore 
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1. Introduction 

Let N be a compact manifold of dimension n, which we assume without boundary, 
otherwise minor changes can be done to get boundary versions of our results. Let N be 
the smooth manifold of immersions 4 of N in a pseudo-Riemannian manifold (M, g). The 
Willmore-Chen functional Q is defined on N to be 

Q(4) = 
s 

((H, H) - re)“‘2 dv, (1.1) 

N 

where H and re denote, respectively, the mean curvature vector field and the extrinsic scalar 
curvature function of 4, and dv is the volume element of the induced metric (via 4) on N 
(see [ 14,271). 

The variational problem associated with this functional is known in the literature as 
the Willmore-Chen variational problem. It was shown by Chen [13] that this functional 
is invariant under conformal changes of the metric 2 of the ambient space M. Its critical 
points are called Willmore-Chen submanifolds. When n = 2, the functional essentially 
agrees with the well-known Willmore functional and its critical points are the so-called 
Willmore surfaces. 

Obvious examples of Willmore surfaces, in spaces of constant curvature, are those with 
H 3 0, in particular minimal and maximal surfaces. Articles showing different methods to 
get examples of non-minimal Willmore surfaces in standard spheres are well known in the 
literature (see, for instance, [4,10,15,22]). Examples in non-standard 3-spheres are given 
in [2]. 

The first non-trivial examples of Willmore-Chen submanifolds (of course with dimen- 
sion greater than 2, namely they are of dimension 4) were obtained in [9]. In [3], the first 
author gave ample families of Willmore tori (either Riemannian or Lorentzian) in pseudo- 
Riemannian manifolds with non-constant curvature. In particular he obtained nice examples 
of Riemannian Willmore tori in some kind of spacetimes close to Robertson-Walker space- 
times. 

However two open problems drew our attention. The first one is that no examples of 
Willmore surfaces are known in the anti De Sitter space. Also, no examples of non-trivial 
Willmore-Chen submanifolds in pseudo-Riemannian spaces (with non-zero index) are 
known in the literature. These two problems will be solved in this paper. Both are ap- 
plications of the technique we will exhibit later. 

The plan of the paper can be summarized as follows. After some preliminaries given 
in the Section 2, we will obtain the result of Pinkall [22], but using a direct approach. To 
do that we will integrate the Euler-Lagrange equations for Willmore surfaces in spaces of 
constant curvature, which were computed in [25]. 

In three-dimensional Lorentzian geometry the anti De Sitter 3-space WT behaves, in some 
sense, as the 3-sphere S3 does in Riemannian geometry (see, for instance, [ 1,7] to compare 
this claim from the point of view of the behaviours of general helices). In particular, two 
Hopf maps can be defined from WT over W2 and W:, respectively (see [6] and Section 2 for 
notation), the first one having closed fibres. Therefore to find Willmore tori in WT it seems 
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natural to deal with the class of Hopf tori and look for solutions of the corresponding Euler- 
Lagrange equations for the Willmore functional on this class. Two facts should be noted. On 
one hand, concerning Hopf tori, we mean surfaces which have a certain degree of symmetry 
and project, via the Hopf map, into closed curves in the hyperbolic 2-plane It!‘. On the other 
hand, the Euler-Lagrange equations obtained by Weiner for Riemannian manifolds work 
also here. However, to integrate these equations, we can use a direct method or a method 
based on the nice symmetries of the Hopf tori to show that there exist no Willmore-Hopf 
tori in W;. 

In Section 4 we deal with the canonical variation of the standard metric in W: (see [I 11 
for details) to get a one-parameter family of pseudo-Riemannian submersions over the 
hyperbolic 2-plane. We use a similar argument to that exposed in [2] to find interesting 
examples of Willmore tori in non-standard anti De Sitter three spaces (these endowed with 
metrics of constant scalar curvature) shaped on certain closed elastic curves in the standard 
hyperbolic 2-plane. 

Section 5 is the main one of the paper. We present a new method to obtain examples 
of WillmoreeChen submanifolds in the pseudo-hyperbolic space W: . We first notice that 
the metric on Wf, obtained as the pseudo-Riemannian product of the standard metric in the 
once punctured (n - r)-sphere Z”-’ and the negative definite standard one in the r-sphere, 
is conformal to the standard metric on HI:. Then we use the homogeneous structure of the 
v-sphere to determine the submanifolds of WF which are SO(r + I)-invariant. Next by using 
the invariance of the Willmore-Chen variational problem under conformal changes of the 
ambient metric and the principle of symmetric criticality [21], we are able to reduce the 
problem of finding SO(r + 1)-symmetric Willmore-Chen submanifolds in ItUF to that of 
closed generalized elastic curves in C”-’ . That means critical points of the functional 

ycv> = (K2)(r+1)‘2 ds 
s 

(K being the curvature function of v) defined on the smooth manifold of closed curves in 
En-’ 

This method will allow us to give a wide family of Lorentzian Willmore tori in the 
standard anti De Sitter 3-space, which come from closed free elastic curves in the once 
punctured 2-sphere (see Corollaries 10 and 11). 

We also determine, for any natural number r and any non-zero rational number, a unique 
closed helix in ,X3 which is a critical point of F’ (see Theorem 12). Therefore we obtain non- 
trivial Willmore-Chen submanifolds in the pseudo-hyperbolic space I$? (see Theorem 
14). 

In Section 2 we generalize the above argument to a remarkable and more general context 
(see Theorem 16). Then we apply it to get some consequences in Section 7. We first obtain 
Willmore tori in some conformal structures on spaces which topologically are products of 
three circles (see Corollary 17). Even so, this result is widely extended with the aid of an 
existence result for elasticae due to Koiso [16] (see Corollary 19). We also make use of our 
method to give examples of pseudo-Riemannian 3-spaces which admit foliations whose 



48 M. Barros et al./Journal of Geometry and Physics 28 (1998) 4566 

leaves are non-trivial Willmore tori. These foliations come from the free elasticity of all 
parallels of certain surfaces of revolution obtained in [8] (see Corollary 18). 

2. Set-up 

Let lRy+’ be the (n + 2)-dimensional pseudo-Euclidean space whose metric tensor is 
given by 

(x,x) = -k &’ @ dx’ + ‘5 dxj @ d& 
i=l j=t+l 

where (x’, . . ..x”+~ ) is the standard coordinate system. Let M”+‘(p) be [Wt+’ if p = 0 
or the (n + 1)-dimensional complete and simply connected space with constant sectional 
curvature K = sign(p)/p2 and index s if p # 0. For each p # 0, a model for M”+’ (p) is 
the pseudo-Euclidean sphere SF+’ (p) if p > 0 and the pseudo-Euclidean hyperbolic space 
lHl:+‘(p) if p < 0, where 

55;+‘(p) = {X E R;+2 : (x,x) = p2) (p > 0) 

and 

w;+‘(p) = (x E rw;$ : lx, x) = -P2) (P < 0). 

Throughout this paper, x : Mnfl (p) + RF+2 will denote the standard immersion of 
Mn+l (p) in Ry+2 . For the sake of brevity we will write V+’ (p) by $$+I (p) and $$+I by 
!5$+’ (1). A similar convention for pseudo-hyperbolic spaces will be used. 

One of the most classical topics in the calculus of variations was proposed by Bernoulli: 
the problem of the elastic rod. According to Bemouilli’s idealization, all kinds of elastica 
minimize total squared curvature among curves of the same length and first order boundary 
data. Recently, Bryant-Griffiths [12], and Langer-Singer [17,18], have generalized the 
notion of elastica to space forms and studied them from a geometrical point of view. Let 
y : I -+ M”(p) be a closed curve in M”(p), then y is said to be a h-elustica (or h-elastic 

curve) if it is an extremal point of the functional 

L 

6~(v> = /((v,T, VTT) + k.)ds, 
0 

for some k, where ds and L stand for the arclength and length of y, respectively. The 
Lagrange multiplier h has been included partly because the case of constrained arclength 
will be useful later. It is called a free elusticu if a = 0; in this case, y is a critical point 
of 6(v) = &)0(v) among closed curves which are allowed to grow in length. This lack of 
constraint of length makes existence an interesting and non-trivial question in the calculus 
of variations. 
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We can assume, without loss of generality, that y is arclength parametrized and let 
{El = T, Ez = N, E3 = B, . . . . E,} be a Frenet frame along y , with curvature functions 
{Kl = K, K2 = T, . . . , K~_ I}, satisfying the Frenet equations 

VrT = E~KN, 

VrN = --E~KT + ~3tB, 

VT&II = -%I-~Krn-16~1, 

where, as usual, T = y’, (Ei, Ei) = Ei, and V stands for the Levi-Civita connection on 
M”(p). Then the Euler-Lagrange equation reduces to the following system of differential 
equations: 

2&2K” + &,K3 - &KS2 i- &1&2(2C - i)K = 0, (2.1) 

2K’t + Kt’ = 0, (2.2) 

KT8 = 0, (2.3) 

where 6 E span{T, N, B}‘. If y does not lie in a two-dimensional totally geodesic sub- 
manifold of M”(p), then Eq. (2.3) implies that S = 0 and so the curve y lies in a three- 
dimensional totally geodesic submanifold of M” (p). Hence we can assume without loss 
of generality that IZ = 2 or n = 3. On the other hand, from (2.2) we deduce that ~~~ = a 

is constant. 
Another interesting topic in the calculus of variations is concerned with the total mean 

curvature of immersed manifolds. The first result of this subject is due to Willmore [28], 
and since then a surface M in [w3, 4 : M + [w3 being the immersion, is called a Willmore 
surface if it is an extremal point of the functional 

1;2($) = 
s 

a2dA, 

M 

where cx and dA stand for the mean curvature function of M in R3 and the area element 
of M, respectively. In [25], Weiner extends this notion to an arbitrary three-dimensional 
Riemannian manifold k: a surface M c i is said to be stationary (or Willmore surface) 
if it is an extremal point of 

Q(4) = s ((H, W + R’) dA, 
M 

where R’ is the sectional curvature of A? along M and H denotes the mean curvature vector 
field. Of special interest is the case when ii? = M3 (p) is of constant curvature K. We 
define the operator W over sections of the normal bundle of M into M3(p) as follows: 

W : T’M + TIM, W(t) = (AD + 2(H, H)Z - i)t, 

where x denotes the Simon operator [24]. A cross-section e will be called a Willmore 
section if W(c) = 0. Then the operator W naturally appears provided that one computes 
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the first variation formula of Q. That can be obtained in a similar way to that given by 
Weiner (see [25]) in the definite case. Now Willmore surfaces are nothing but extremal 
points of the Willmore functional and they are characterized from the fact that their mean 
curvature vector fields are Willmore fields. 

More generally, let (Mn, g) be an n-dimensional submanifold of a Riemannian manifold 
(2, 2). Then ((H, H) - re)g is invariant under any conformal change of the ambient metric 
g, r, standing for the extrinsic scalar curvature with respect g [14]. When A? = M”(p) 
and M” is compact then re = t - K, t being the scalar curvature of (M”, g), and M is 
said to be stationary (or a Willmore-Chen submanifold) if it is an extremal point of 

52(@) = 
s 

((H, H) - re)“* dV, 

M 

dV standing for the volume element on M. The variational problem associated with this 
functional Q is an extrinsic conformal invariant and so are the Willmore-Chen submani- 
folds. 

3. Willmore tori in the 3-sphere 

Let rr : S3 + S*( l/2) the usual Hopf fibration, which is a Riemannian submersion 
relative to canonical metrics on both spheres (we will follow the notation and terminology 
of [11,20]). 

For any unit speed curve y : I c IF! + S*( l/2), we can talk about horizontal lifts 
p(s) of y(s) and obtain unit speed curves in S3. All these curves define the complete lift 
MY = rr-‘(v) of y. This is a flat surface which we will call the Hopf tube over y. It is easy 
to see that MY can be parametrized by 

P(S, t) = Eiry(S), (3.1) 

w being a mapping I x 0%’ + S3 and f a fixed horizontal lift of y. 
If y is a closed curve in S*( l/2) of length L enclosing an oriented area A, then its Hopf 

tube M, is a flat torus (the Hopf torus over v) which is isometric to R*/f, r being the 
lattice generated by (0,2x) and (L, 2A). 

Let us consider the manifold of all immersions of a torus in S3. Then the Hopf tori 
correspond with those immersions which are invariant under the usual S’-action on S3 
in order to get S2(1/2) as the orbit space. The Willmore functional of the manifold of 
immersions is invariant for this S1-action. Then we can use the nice argument of Pinkall 
(see [22]), based on the principle of symmetric criticality of Palais [21], to reduce the 
problem of finding symmetric Willmore tori (i.e., Willmore-Hopf tori) in S3 to that of 
finding closed elasticae (with Lagrange multiplier h = 4) in S* (l/2). This is the way used 
by Pinkall [22] to get infinitely many embedded Hopf tori which are Willmore tori. 

We wish to point out that Pinkall’s result can be also obtained by a straightforward 
computation. To do that we will solve the Euler-Lagrange equation for Willmore tori in the 
3-sphere (see [25] for details). That equation turns out to be 
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ADH = A(H) - 2a2H. (3.2) 

H being the mean curvature vector field of the torus in s3, cz2 = (H, H) the squared of 
the mean curvature function and AD the Laplacian relative to the normal connection. All 
geometric invariant appearing in (3.2) can be computed from (3.1). 

The shape operator A of M, is given by 

AX, = kX.7 + Xr, AXt = X,, (3.3) 

where K = ~orc, K being the curvature function of y in s2 (l/2) (see [6] for details). 
We also have that 

H = $(trA)t = iK(, ADH = -;,“<, (3.4) 

6 being a unit normal vector field of M, in s3 and k” = d2K(s)/ds2. 
Finally, it is easy to see that i(H) = IA12H, so that 

A(H) = $(k2 f 2)c. (3.5) 

Now bring (3.4) and (3.5) to (3.2) to get 

2K”+K3 +4K =O. (3.6) 

This is nothing but the Euler-Lagrange equations (2.1) and (2.2) for 4-closed elastic 
curves in S2(1/2) (see also [18, Eq. 1.21). 

Summing up, we have shown that M, is a solution of (3.2) and therefore a Willmore 
surj-ace in S3, if and only if y is a solution of (3.6), and so a 4-elastica in s2(1/2). 

Remark 1. In some sense, the anti De Sitter and De Sitter worlds, W: and S:, respectively, 
behave as the spherical and hyperbolic space forms s3 and W3, respectively. A nice example 
illustrating this fact arises when one studies evolution equations associated with Killing 
flows in space forms (either Riemannian or Lorentzian). In particular, curves which evolve 
under a certain flow without changing shape, only position. For instance, general helices 

(see L71). 
In studying the anti De Sitter 3-space I$, we have found a couple of Hopf maps nj : 

ItUT + E-U; (- l/2), j = 0, 1, according to the base space is the hyperbolic 2-plane lH$, = W2 

or the pseudo-hyperbolic 2-plane Wf (see [6] for details). We wish to study the Willmore 
problem in W: and, in particular, we are trying to get Willmore surfaces in W: coming from 
curves in w,?. 

The computations we have made in S3, via the usual Hopf map, hold now and the 
Euler-Lagrange equation W(H) = 0 for M,,j = nj -’ (y), reduces to the Euler-Lagrange 
equation 

(-1) j+t2K” - K3 + 4cK = 0 

for (-4)-elastic curves in Wz, c being the sign of the surface M,.j. 
We wish to point out that fibres of no are circles, and thus M, = MY,0 is a torus provided 

that y is closed, whereas fibres of n) are not compact. Therefore, given a closed curve y in 
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W2, then M, = rr;’ (v) is a (Lorentzian) Willmore torus if and only if y is a (-4)-elastic 
curve in W2. Unfortunately, a recent result of Dan Steinberg in his Ph.D. dissertation, kindly 
communicated to us by D.A. Singer, shows that there is no closed (-4)-elasticae in W2. As 
a consequence, one should conclude that there are no (Lorentzian) Willmore tori in the anti 
De Sitter 3-space W:. 

4. Willmore tori in non-standard anti De Sitter 3-space 

Let n : (M, g) -+ (B, h) be a pseudo-Riemannian submersion. We can define a very 
interesting deformation of the metric g by changing the relative scales of B and the fi- 
bres (see [ 111). More precisely, it is defined the canonical variation g,, t > 0, of g by 
setting 

grlv = t2 gly 1 grIti = gl’FI , g,(V, 7-l) = 0, 

where I, and ?-t stand for vertical and horizontal distributions, respectively, associated with 
the submersion. Thus we obtain a one-parameter family of pseudo-Riemannian submersions 
nt : (M, g,) + (B, h) with the same horizontal distribution 3-1, for all t > 0. Relative to 
O’Neill invariants A’ and T’ of these pseudo-Riemannian submersions, we will just recall 
a couple of properties. First, if g has totally geodesic fibres (T = O), the same happens for 
g,, for all t > 0. Furthermore, 

A$J = t2AyiJ, (4.1) 

for any Y E 7-i and U E V. 
Now we consider the canonical variation of the Hopf fibration n = no : U-U: += E-II2 (- l/2) 

to get a one-parameter family of pseudo-Riemannian submersions n, : (Wf, gt) + (W2 
(-l/2), go). Let y be a unit speed curve immersed in W2(-l/2). Set 7y,t = n,‘(v). Then 
Iy,t is a Lorentzian flat surface immersed in W:, that will be called the Lorentzian Hopf 
tube over y. As the fibres of nr are Wt , which topologically are circles, then 7y,t is a Hopf 
torus in (Wi, gr), provided that y is a closed curve. It is obvious that the group G = s’ 
naturally acts through isometries on (ltll:, gt), for all t > 0, getting (W2(-l/2), go) as the 
orbit space. The following result, whose proof is omitted, gives a nice characterization of 
the G-invariant surfaces in (We, gt). 

Proposition 2. Let S be an immersed su$ace into (I$, gt). Then S is G-invariant ifand 
only ifs is a Lorentzian Hopf tube ?;,* = nt (y) over a certain curve y immersed in the 
hyperbokc 2-plane (W2(- l/2), go). 

Remark 3. The canonical variation of a pseudo-Riemannian submersion has been used to 
get examples of homogeneous Einstein metrics (see [ 111 for a nice and complete exposition 
on the subject). In dimension 3, Einstein metrics correspond with constant sectional curva- 
ture metrics. Therefore, the standard metric g = gt is the only Einstein metric that one can 
find on the anti De Sitter 3-space. However, we can use a well-known formula to compute 
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the scalar curvature of the canonical variation of a pseudo-Riemannian submersion (see 
[ 1 l] again), to find that (ll-il~, g,), t > 0, is a one-parameter family of pseudo-Riemannian 
manifolds with constant scalar curvature, and so the nicest metrics on the anti De Sitter 
3-space after the canonical one. 

In the following we will use the principle of symmetric criticality in order to reduce the 
problem of finding Lorentzian Willmore tori in (W;, g,), f > 0, to that of finding closed 
h-elasticae in (W*(--l/2), go). 

Theorem 4. Let n, : (E-U:, gt) -+ (W’(- l/2), go), t > 0, be rhe canonical variation ofthe 
pseudo-Riemannian Hopf jibration. Let y be a closed immersed curve in (W2 (- l/2), go) 
and I,., = SC-’ (y) its Lorentzian Hopf torus. Then Iy,, is a Willmore surjiice in (I-$, g,) 

if and only if y is an elastica in (W2(-l/2), go) with Lagrange multiplier h = At’. 

ProojI Let T = S’ x S’ be a compact surface of genus one, i.e., T is a topological torus. 
Consider the smooth manifold of immersions of T into (Hi’, gt), say M = (4 : T --+ 
(WY, g,) : 4 is an immersion]. The Willmore functional on M is 

Q(4) = s ((H, H) + R’) dv, 
T 

H and R’ standing for the mean curvature vector field of T and the sectional curvature 
of (HI:, g,), measured with respect to the tangent plane to (T, @), respectively. It is clear 
that, for any eiH E S’, we have that Q(4) = Q(eie . 4). Now let us denote by C the set 
of critical points of Q in M, i.e., C is the set of genus one Willmore surfaces. Let MC be 
the submanifold of M made up by those immersions of T which are (G = St )-invariants 
and let CG be the set of critical points of Q restricted to MG. The principle of symmetric 
criticality (see [21]) can be used here to find that C fl MG = CC. Now from Proposition 2 
we obtain that CG = {7Y,t = nt-’ (v): y is an immersed closed curve in (W2(-l/2), go)}. 
To compute sZ(‘&,,,), i.e., the Willmore functional on CG, we first notice that (Y = :K, 
K being the curvature function of y in (W2(- l/2), go). Now we are going to compute 
R’. Let X = y’ be the unit tangent vector field along y and X its horizontal lift (for 
any r > 0) to (E-I:, gr). Then, at any point, the tangent plane of 7Y,t is spanned by X 
and U, U being a unit (with respect to gt) timelike vector field which is tangent to the 
fibres of rr[. Then the tangent plane of 7Y.r is a mixed (also called “vertizontal”, see [26]) 
section of 75, : (W:, gr) + @*(-l/2), go). As g, has geodesic fibres, we know that 
R’ = -g, (ALU, AiU), A’ being the O’Neill invariant for the submersion g,, which is 
known to be (see [ 111) 

V’ being the Levi-Civita connection of g,. Then we have 

-1 = g,(U, U) = -t’g(U, U) = -g(tU. tU). 
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so .$ = tU is a unit timelike vector field with regard to g. Now, from [6, p. 31, and bearing 
in mind that Vi U is horizontal, we get 

grp7p, ix> = ig,(U, [ix, Xl) 
= igt(U, vip - V)$) 

= &(U, -g&f, Jx - gt(Z at> 
= $mJ, -2‘t) 
= -t2g(U, 6) = t. (4.2) 

On the other hand, 

gt(V:,U, X) = 1 2 G&w, r7> + Ugt (X, X) - X&(X, u> 
- g&c rut Xl) + gtw, lx, Xl> + gr(X rx Ul>l 

= 0. (4.3) 

From (4.2) and (4.3) we deduce that 

VgU = tix. 

Hence, 

R” = -gt(tiX, ti%) = -t2. 

Let L be the length of y. As the fibres of g, are circles of radii t, we have 

L 2nt 

fq,,t) = 
s 

(cr2+Rf)du=// ($*2_1=)dsdr 

n;‘(v) 0 0 

L 

= y [(K= -4t2)ds. 0 

0 

Remark 5. The canonical variation g, of the standard metric gt = g on E-U: provides an 
easy and useful way to get infinitely many Willmore tori in (W:, g, ). In fact, in working 
with the pseudo-Riemannian Hopf fibration, we were not able to produce Lorentzian Hopf 
Willmore tori into t7-I: by pulling back elasticae in (W2(-l/2), go). This is because the 
Lagrange multiplier we found is h = -4, which is not permitted (see Remark 1). Now, by 
applying Theorem 4 and results by Langer and Singer [ 181, we give, for t E (0, l), infinitely 
many Willmore tori in (W:, gr). It is worth pointing out that, in particular, any curve y of 
constant curvature KO in (W2 (- l/2), go) can be realized as an elastica in (W2 (- l/2), go) 
with Lagrange multiplier h = ~0 - 8. Now y is closed provided that ~02 > 4, so that taking 
~02 E (4,8), 7Y,r = n,‘(y) is a Lorentzian-Willmore torus with constant mean curvature 

in (WY, gr), where t = 
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5. Wilhnore-Chen submanifolds in the pseudo-hyperbolic space 

55 

In this section we are going to introduce a new method to construct critical points of the 
Willmore-Chen functional in the pseudo-hyperbolic space W: = WY (-1). First we will 
write HI: as a warped product with base space the standard hyperbolic space W”-‘. Then 
we will use the conformal invariance of the Willmore-Chen variational problem to make a 
conformal change of the canonical metric of Hp. Next we use the principle of symmetric 
criticality of Palais [2 l] to reduce the problem to a variational one for closed curves in the 
once punctured standard (n - r)-sphere. 

5.1. l-i: as a warped product 

Given0 <Y < n,let 

W”_’ = ((x(),x) E [w x OX”-’ : -x~+(x,x)=-landxo>O} 

the hyperbolic (n - r)-space and 

w; = ((6, n) E KY+’ x (Wn-’ : -(4,{) + (17, rj) = -1) 

the pseudo-hyperbolic n-space. They are hypersurfaces in R;-‘+’ and rW:$, respectively. 
The induced metrics on these spaces, from those in the corresponding pseudo-Euclidean 
spaces, define standard metrics ho on O-U: and go on Wn-‘, both with constant curvature - 1. 

Let .S’ be the standard unit r-sphere endowed with its canonical metric do2 and consider 
the mapping Q, : Wn-’ x $5’ -+ E-U: defined by 

@((x09 x), u) = (xou, x). 

It is not difficult to see that @ defines a diffeomorphism whose inverse is @-I([, n) = 
((It], n), .$/It\>. For any curve B(t) = ((x0(t), x(t)), u(t)> in W”-’ x 3’ we have 

(d@acc,(B’(r))l’ = -x;(02 + lx’(t)12 - xo(r)21u’(01’. (5.1) 

Let f : E-Y-’ + R be the positive function given by f(q), x) = xo and consider the 
metric g = go - f2 da* on HI”-’ x S’. The pseudo-Riemannian manifold (H”-’ x S’, g) is 
called the warped product of base (BY-‘, go) and fibre (S’, -da2) with warping function 

It is usually denoted by (lt4n-r, go) xf (S’, -da2) or Wn-’ xf (-S’) when the metrics 
on the base and fibre are understood (see [ 11,201 for details). Now formula (5.1) shows that 
@ is an isometry between W”-’ xf (-9) and (!-I:, ho). 

Consider a new metric h on W: defined by 

1 1 
h = -@o = fzgo - da’, 

with the obvious meaning by removing the pulling back via @. Thus (I-U:, h) is the pseudo- 
Riemannian product of Q-Vr, ( l/f2)ge) and (Sr , - da2). Finally it is not difficult to see 
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that (I-P-‘, (l/f*)ga) has constant sectional curvature 1, so that it can be identified, up to 
isometries, with the once punctured standard (n - r)-sphere (En-“, da’). Consequently, 
(I-U:, h) is nothing but (C”-‘, do2) x (3’, - da2), up to isometries. 

5.2. SO@ + l)-invariant submanifolds in E-4: 

For any immersed curve y : [0, L] + E-U”-‘, we define the semi-Riemannian (r + l>- 
submanifold T, = @ (y x $3’). It is clear that T, has index r and we will refer to T’, as the 
tube over y . Now let G = S 0 (r + 1) be the group of isometries of (Y, - da2). Obviously, 
G acts transitively on (Y, - da2). So we define an action of G on E-U: as follows: 

a . (6,17) = @(a . @% VI) = (a . (C)t rl) 

foranya E G. 
This action is realized through isometries of (W: , ho). The following statement charac- 

terizes the tubes over curves in U-U”-’ as symmetric points of the above mentioned G-action. 

Proposition 6. Let M be an (r + I)-dimensionalsubmanifold in Hp. Then M is G-invariant 
if and only ifM is a tube r, over a certain curve y in O-U”-‘. 

Proofi Let M be a G-invariant submanifold of dimension r + 1. For any p E M, write 
p = (6, r]) = @((x0, x), u) = (xou, x), where u E 9. Now the G-orbit through p is given 

by 

[p] = {a e p : a E G) = ((xoa(u), x) : u E G) = (xosr, X) , 

where we use that G acts transitively on 9. This proves that M is foliated by r-spheres, so 
that we can consider the orthogonal distribution to this foliation. Since it is one-dimensional, 
we can integrate it to get a curve y(t) = (x0(t), x(t)) in HI”-’ with @(y(t) x Y) = TV = 
M. The converse is trivial. ??

5.3. Criticalpoints of F’(v) = &(K~)(~+‘)/’ ds 

Now we deal with the functional 

F-‘(y) = s (K~)(“+‘)/~ ds 

defined on the manifold of regular closed curves (or curves satisfying given first order 
boundary data) in a given pseudo-Riemannian manifold, where r stands for any natural 
number (even though all computations also hold if r is a real number). Notice that we write 
the integrand in that form to point out that it is an even function of the curvature K. Also 
3’ agrees with 8, which is the elastic energy functional for free elasticae. 

Let y : I c R + .Y be aunit speed curve in the unit m-sphere with curvatures (K, t, . . .} 

and Frenet frame {T = y’, 62, . . . , Cm}. Given a variation r := r(s, t) : I x (--E, E) -+ 
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$9 of y , with r(s, 0) = y(s), we have the associated variation vector field W(s) = 
(ar/at)(s, 0) along y. We will use the notation and terminology of [18]. Set V(s, t) = 
arias, W(S, t) = ar /at, U(S, t) = IV(S, t)l, zys, t) = (I/u)v(s, t), K(S, t) = p+q*, 
V being the Levi-Civita connection of Y’ . The following lemma in [ 181 collects some basic 
facts which we will use to find the Euler-Lagrange equations relative to 3’. 

Lemma 7. With the above notation, the following assertions hold: 

[V, W] = 0; E = (VTW, T)v; [W, T] = -(vTW, T)T; 

NW, Tl, Tl = T((VT W, T))T; 

aK* 
- = 2(VtW, VTT) - ~(VTW, T)K* + 2(R(W, T)T, VTT), 
at 

R being the Riemann curvature tensor of 3”. 

To compute (i3/at)F(y) = (a/at)F(r(s, t)), we use this lemma and a standard ar- 
gument involving integration by parts. Then we consider 3’ defined on a manifold which 
only contains either regular closed curves or curves satisfying first order boundary data on 
9” in order to drop out obvious boundary terms which appear in the expression of that 
variation. As a matter of fact, (a/at)]t,03r (r(s, t)) = 0 allows us to get the following 
Euler equation, which characterizes the critical points of 3’ on the quoted manifolds of 
curves: 

(,*)(r-wv3 T + 2d((K2)(r-1)/* 
T ds 

)V;T + (K~)+‘)/~ + !&K2)“-1)/2) 
( 

+ 5(K2)(r+1)/2 
I 

VrT + zi((~~)@+~)l~)T = 0. 

From here and the Frenet equations for y, we find the following characterization of the 
critical points of 3”. 

Proposition 8. tit y be a regular curve in ?%“’ with curvatures (K, t, 6, . . .}. Then y is a 
critical point of 

3”(v) = 
s 

(K2)(r+‘)/2 d,y 

if and only if the following equations hold: 

r 3 
rK” + -K 

r+l 
-Kt*+K+ 

r(r - 1) 
---(K’)2 = 0, (K2)? = 0, 6 = 0. 

K 

In particulal; y lies in some S2 or S3 totally geodesic in 9’. 

From now on we will call r-generalized elasticae to the critical points of T. In particular, 
free elasticae are nothing but l-generalized elasticae. 
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5.4. A key result 

We are going to characterize the tubes in (I-U:, ho) which are Willmore-Chen submani- 
folds. 

Theorem 9. Let y be afully immersed closed curve in the hyperbolic space BF’. The tube 
Y, = @ (y x !S) in (We, ho) is a Willmore-Chen submanifold ifand only ify is a generalized 

free elastica in the once punctured unit sphere (En-‘, da2). In particulal; n - r 5 3. 

Proo$ Given a closed curve y in HI”-‘, let Y be the smooth manifold of all immersions of 
y x S’ in (D-OF, ho), i.e., y = (4 : y x 3’ + (E-Of, ho): 4 is an immersion}. The Willmore- 
Chen functional on Y writes down as 

a($) = 
s 

((H, H) - r,)(‘+1)‘2 du, 

yxS’ 

H and r, standing for the mean curvature vector field and the extrinsic scalar curvature 
function of 4, respectively, and dv being the volume element associated with the induced 
metric. Denote by 4 the immersion 4 when it is endowed with the induced structure coming 
from the metric h = ( l/f2)hc. Since the Willmore-Chen variational problem and, in 
particular, the Willmore-Chen functional are invariants under conformal changes of the 
ambient metric, we have 

Let C be the set of critical points of Q on Y, i.e., C is the set of Willmore-Chen immersions 
of y x S’ in (U-U:, ho). Let YG be the submanifold of Y made up by G-invariant immersions 
and Co the set of critical points of Sz when it is restricted to YG. By using again the principle 
of symmetric criticality of Palais [21], we have 

Since YG is nothing but the set of tubes over closed curves in the hyperbolic space I-U”-‘, 
i.e., yo = {@(y X s.‘) : y c b!n-r), we cm compute the restriction of fi to YG to get 

L?(@(y x S’)) = 
1 

(r + L)‘+, 
s 

(K2)‘r+1)‘2 dv 

yxS’ 

vol(S’, - da2) 
= 

(r + l)‘+l s 
(K2)(r+r)/2 ds, 

Y 

where K stands for the curvature function of y in the once punctured unit sphere ( JFr, da2) 
= (E-Fr, ( l/f2)gc). Notice that we have used the metric h on E-U: to take advantage of 
the pseudo-Riemannian product structure of (We, h) = (En-“, da2) x (Y, - da2). This 
proves the first part of the statement. 

As for the second one, just combine Proposition 8 with the fullness assumption. ??
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5.5. Some examples 

In order to give examples of non-trivial Willmore-Chen submanifolds in the pseudo- 
hyperbolic space (E-I:, ho), we apply Theorem 9. To do that, we start with a fully immersed 
closed curve y in the hyperbolic (n - r)-space E-U”-‘, with n - r ( 3, and then we view 
E-U”-” as a once punctured (n - r)-sphere (_?Yr, da2). Therefore, the first case we will 
consider is n = 3 and r = 1. Then Theorem 9 applied here writes down as follows: 

Corollary 10. Let y be an immersed closed curve in the hyperbolic 2-plane. The Lorentzian 
tube CY, = @(y x s’) is a Willmore torus in the three-dimensional anti De Sitter space 
(WY, ho) ifand only if y is afree elastica in the once punctured unit 2-sphere (,X2, do’). 

The complete classification of closed free elasticae in the standard 2-sphere was achieved 
by Langer and Singer [ 181. That classification can be briefly and geometrically described as 
follows: Up to rigid motions in the unit 2-sphere, the family of closed free elasticae consists 
of a geodesic yn, say the equator, and an integer two-parameter family {ym,n : 0 < m -C 
n, m, n E Z), where Y,,,~ means that it closes up after n periods and m trips around the 
equator ~0. 

As a consequence we have: 

Corollary 11. There exist infinitely many Lorentzian Willmore tori in the three-dimen- 
sional anti De Sitter space. This family includes (Y,,,, : 0 < m < n, m, n E Z) and 

TY”. 

A second case we will consider is n - r = 3. Then we are looking for critical points of 
7 (y), i.e., solutions of two first equations in Proposition 8 inside the family of helices in 
the standard once punctured 3-sphere (Z: 3, da*). (For details about the geometry of helices 
in the standard 3-sphere we refer to readers to [5]). 

Let y be a helix in ( E3, da*) with curvature K and torsion t. From now on we will assume 
that y is a not a geodesic; otherwise, it is a trivial solution. Then y is an r-generalized free 
elastica if and only if 

r 2 
-/C 
r+l 

- T2 + 1 = 0. 

That means that, in the (K, t)-plane of helices in (Z 3, da *) (3’ has exactly a hyperbola of 
critical points. To determine the closed helices which are r-generalized elasticae we use the 
following argument series (see [9]). First, take the usual Hopf fibration n : (X3, da*) + 
(s2, ds*), where the base space is chosen to be of radius $ in order to n be a Riemannian 
submersion. Let /3 be an arclength parametrized curve with constant curvature p E R into 
(S*, ds*). Let SD = n-’ @I) be the Hopf tube over /I (see [5] or [22] for details). Then 
5~ becomes a flat torus with constant mean curvature in ( Z3, da*). Furthermore, it admits 
an obvious parametrization !P(s, t) by means of fibres (s = constant) and horizontal lifts 
j of /I (t = constant). If y is a geodesic of So, with slope 1 E R (slope measured with 
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respect to ly). then y is a helix in (E’, da*) whose curvature K and torsion t are given 

by 

p + 21 
K=1+12 (5.3) 

(5.4) 

Secondly, the converse also holds. Namely, given any helix y in (E3, da*), with curva- 
ture K and torsion t, it can be viewed as a geodesic in a certain Hopf tube of (E3, da*). 
Indeed, let us just consider Sb = D-‘(B), /3 being a circle into (s*, ds*) with constant 
curvature p = (K* + t* - l)/~ and take now a geodesic in SB with slope 1 = (1 - t)/~. 

Thirdly, let L and A be the length of fi and the enclosed oriented area by /I in (s*, da*), 
respectively. As Pinkall showed [22], SB is isometric to lR*/r, r being the lattice generated 
by (L, 2A) and (0,2n). We notice that, due to the holonomy, the horizontal lifts of /I are 
not closed in (E3, da*). Now the helix y lying in Sb is closed if and only if 

1=&*+4+ (5.5) 

where q is a non-zero rational number (otherwise, K = 0 and y would be a geodesic in 
(E3, da*), and therefore a trivial critical point of Fr), and p is the curvature of /3. 

Finally, let p and q be any real number and any non-zero rational number, respectively. 
Then we use (5.5) to get the slope, and (5.3) and (5.4) to compute the curvature K and 
torsion t of a closed helix y in (X3, dc*). Moreover, y will be an r-generalized free 
elastica provided that K and r satisfy (5.2). Therefore p and q satisfy 

(rp + 2(2r + 1)Z - (r + l)pZ*)(p + 21) = 0. (5.6) 

Since Y was assumed to be non-geodesic, we have that p + 21 # 0. So we bring (5.5) to 
the equation rp + 2(2r + 1)1 - (r + l)p1* = 0 to get 

(r + l)*(q* - $)*p4 + 4(r + l)((r + l)q4 - i(3r + l)q* + &(r + l))p* 

-4q2(2r + 1) = 0. (5.7) 

From here we see that for any non-zero rational number q we have exactly one positive 
solution p* of the quoted quadratic equation. That can be summed up in the following: 

Theorem 12. For any natural number r, there exists a one-parameterfamily { Y~)~~Q\(~) 
of closed helices in ( C3, da*) which are r-generalizedfree elastica. 

Remark 13. From r,o + 2(2r + l>Z - (r + l)p1* = 0 we easily see how to get q in terms 
of p. It suffices to write the quadratic equation 

(r + l)pJp2+44* - ((r + l)p* + 2(2r + 1))q + qp&ZZ = 0. 
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We already know that for any non-zero rational number 9, we have exactly one p (up to 
the sign). In contrast, the last formula says that each p determine exactly two values of q, 
unless p2 = (2r + l)*/(r(r + l)), which corresponds to q = fi. Since both values of 
q are rational, that means that the corresponding Hopf tori in (E3, da2) have transverse 
foliations by closed free elastic helices. As a consequence we obtain 

Theorem 14. Let r be any natural number. For any non-zero rational number q, there 
exists an (r + 1 )-dimensional Willmore-Chen submanifold Y,, = @ (y x S’) in the pseudo- 
hyperbolic space (WF+3, ho), y being an r-generalized free elastic closed helix in the once 
punctured unit 3-sphere (Z’, da*) whose slope 1 is computed as above. 

6. A general approach 

We are going to extend the argument we have used in the last section to construct 
Willmore-Chen submanifolds in the pseudo-hyperbolic space. 

Let (MI , gl ) and (M2, g2) be two pseudo-Riemannian manifolds of dimension n 1 and 
n2, respectively. Given a positive function f defined on Ml (we can assume inf(f) > 0 if 
MI is not compact), define the warped product Ml xf’ (cM2), i.e., the product manifold 
MI x Mz endowed with the metric tensor g = gl + Ef 2g2, where E = f 1, f being the 
warping function. We simply write M = Ml xf (EMU) when the involved metrics are 
understood. From now on (M2,gz) will be a homogeneous space and G its isometry group. 
This action can be naturally extended to M by defining 

MxG+M 

((ml,m2La) + (ml,m2>.a=(ml,m2.a), 

for any (m 1, ml) E M and a E G. As the action of G on M is transitive, the orbit of any 
point m E M is nothing but [m] = {m 1) x M2. Then a preliminary result states as follows. 

Proposition 15. Let N be a submanifold of M of dimension n2 + 1. Then N is G-invariant 
if and only if there exists a curve y in Ml such that N = y x f (EMU). 

ProojI It is easy to see that any submanifold y xf (E M2) is G-invariant. Conversely, assume 
that N is G-invariant. Then the orbit [p] = (ml) x M2 of any p = (ml, m2) E N is a 
n2-dimensional submanifold of N. This proves that N is foliated whose leaves are totally 
umbilic submanifolds in (M, g) all of them diffeomorphic to M2. In other words, the leaves 
of this foliation are nothing but the fibres of the warped product (M, g) along N. The 
transverse (orthogonal) distribution, being of dimension one, can be integrated. Therefore, 
we can choose a curve y in MI such that the submanifold N writes down as N = y x f (E M2), 
which concludes the proof. ??

Now the main result states as follows. 
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Theorem 16. Let (M, g) = (Ml, gl) xf (Mz, eg2) be a warpedproduct, where (M2, g2) 
is a compact homogeneous space of dimension n2. Let y be an immersed closed curve in 
(MI, gl). The submanifold N = y xf (EMU) is a Willmore-Chen submanifold in (M, g) if 
and only if y is a $(n2 + 1)-generalizedfree elastica in (Ml, (11 f 2)g1). That means that 
y is a critical point of the functional 

Fn*(y) = 
s 

(,2)(n2+')/2ds, 

Y 

K being the curvaturefunction of y into (Ml, (l/f 2)g1). 

Proofi Since the Willmore-Chen variational problem is invariant under conformal changes 
of the metric of the ambient space, we are allowed to consider a new metric jj on M defined by 

g = -g = -gt + Eg2. 
;2 fi 

Therefore, Willmore-Chen submanifolds in (M, g) and (M, g) agree. Moreover, we will 
profit by the pseudo-Riemannian product structure of (M, ,ij) . Let us denote by N the smooth 
manifold of (n2 + l)-dimensional compact submanifolds in (M, g). The Willmore-Chen 
functional on N writes down 

Q(N) = 
s 

((H, H) - r,)(“2+‘)‘2 dv, 

N 

H and re standing for the mean curvature vector field and the extrinsic scalar curvature 
of N in (M, j), respectively, and dv is the volume element of N relative to the induced 
metric. Now set n/c the submanifold of N made up by those submanifolds which are G- 
invariant. By Proposition 15, we already know that NC = {y xf (EMU): y is an immersed 
closed curve in MI}. Similarly, let C and CG be the set of critical point of Q on N (i.e., the 
set of Willmore-Chen submanifolds) and on NC, respectively. The principle of symmetric 
criticality of Palais [21] can be applied here, because Q is invariant under the action of 
G on (M, g). Observe that G acts through isometries, so that f has no influence. Hence 
C f~ NC = CC. Now we are going to compute 6? on NG. First Q writes down as 

WY xf (cM2)) = 
s 

((H, H) - T~)@Q+~)‘~ ds dv2, 

where ds stands for the arclength element of y into (Ml, (l/f 2)g1) and dv2 is the volume 
element of (M2, Eg2). As (M, 2) is a pseudo-Riemannian product, it is not difficult to see 
that re vanishes identically and (H, H) = (I/(nz + 1)2)~2, K being the curvature function 
of y in (Ml, (l/f2)gl). Thus we obtain 

which finishes the proof. 0 
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7. Some applications 

7.1 

Let gt be any conformally flat Lorentzian metric on a torus T2 = S1 x S’ . It is known 
that (T2, gl ) is complete, which is not guaranteed, in the realm of Lorentzian geometry, 
from the compactness of T2 (see for instance [23]). Let us denote by go the conformal 
flat metric. There is a positive function, say f : T2 + If& such that gi = f2gu. Set 
M3 = T’ x S’ endowed with the pseudo-Riemannian metric g = gi + of 2 dt2, where 
E = f 1 and dt2 denotes the canonical metric on the unit circle s’ The following statement 
shows the existence of Willmore tori in the three-dimensional pseudo-Riemannian manifold 
(M, g), which topologically is the product of three circles. 

Corollary 17. Let M3 = T2 x S’ endowed with the metric g = gl + if 2 dt2, where gl 
is any conformally pat Lorentzian metric on T2 and f the positive function on T2 giving 
this conformuljatness (go beingfIat and gl = f 2go). Then r = y xf (ES’) is a Willmore 
torus in (M3, g) if and only if y is a closedfree elastica in the Lorentzianpat torus (T”. go). 

The proof is a straightforward computation from Theorem 16. Furthermore, one can 
construct closed free elasticae in (T2, go) from free elasticae in the Lorentz-Minkowski 
2-plane l_2 (see [6]). 

7.2 

Let (We, go) be the standard anti De Sitter 3-space. Given any positive function f : E-4: --+ 
R, consider the metric gf = f 2ho. Let (M, g) be the pseudo-Riemannian product manifold 
M = E-O: x M2 endowed with the metric g = gf + f 2cg2, (Mz, g2) being any compact 
homogeneous space. Then y x M2 is a Willmore-Chen submanifold in (M, g) if and only 
if y is a i (n2 + 1)-generalized closed free elastica in (E-U:, go). 

As above, one can find i(n2 + 1)-generalized closed free elasticae in @I$, go) for any 
non-zero rational number (see [6] again). 

7.3 

We will get three-dimensional pseudo-Riemannian manifolds (either Riemannian or 
Lorentzian) admitting a foliation whose leaves are non-trivial Willmore tori (either Rie- 
mannian or Lorentzian). These foliations will be called Willmore foliations. Also we will 
say that the pseudo-Riemarmian manifold is Willmore foliated. To do that we start with an 
immersed plane curve y : I c R + R2 and a pair of positive functions fl , f2 : I + R. Let 
M = y xS* xS’ endowedwiththemetricgivenbyg = ds2+ ff dr:+cfi dti, keepingthe 
above terminology. It is clear that g is conformal to the pseudo-Riemannian product metric 
g defined by g = go + E dtz on the manifold M = N x S’ , where go = dt* + (fl / f2)2 dtf 
and N = y x S1 . Notice that we have reparametrized y by ds/ dt = fl (s). We can now 
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make a suitable choice of both fl and f2 along y in order to view (N, go) as a surface of 
revolution in Iw3. On the other hand, the elasticity of parallels in a surface of revolution was 
yet discussed in [8]. There it was shown that, besides right cylinders (all whose parallels 
are geodesics and therefore trivial free elastic curves), the only surfaces whose parallels are 
all free elasticae are the trumpet surfaces (which are free of geodesic parallels, see [8] for 
details). Then we have: 

Corollary 18. Let (b, c) be apair of real numbers, with c > 0. Set I = (-2/c, 2/c) - {0} 
anddejiney:I~IW+IW~by 

Let fl, f2 : I + Iw2 be two positivefunctions satisfying (fl/fz)(s) = $s2. Then M = 
y x S’ x S’, endowed with the metric g = ds2 + ff dtt + ef: dtz, admits a Willmore 
foliation which is either Riemannian or Lorentzian, according to E is 1 or - 1, respectively. 

7.4 

The construction we made in 7.1. can be extended as follows. Let (M, g) be any compact 
Riemannian manifold and f any positive smooth function on M. Let N = M x s’ endowed 
with the metric gf = g + Ef 2 dt2. From Theorem 16 and a remarkable result of Koiso [16], 
we have the following existence result for Willmore tori. 

Corollary 19. There exist Willmore tori in (N, gf) for any positive smooth function f on 
M. 

Proo$ We first apply Theorem 16 to (N, gf ). Given a closed curve y immersed in (M, g), 
then y xf (ES’) is a Willmore torus in (N, gf) if and only if y is an elastica into 
(M, (l/ f 2)g). Now the existence of these curves in any compact Riemannian manifold 
is guaranteed by the result of Kaiso [ 161. 

It should be noticed that the elastica in (M, (l/f 2)g) could be a closed geodesic. In 
fact, elasticae appear as stationary solutions of a parabolic partial differential equation. The 
existence of such a solution on the space of closed curves of fixed length is proved in [ 161. 
This solution can be a geodesic since geodesics are singular, stationary solutions of that 
equation. 0 

7.5 

The last application will show once more how powerful is our method. 

Corollary 20. For any positivefunction f on a genus zero Riemann su$ace M, there exist 
at least three conformal minimal (maximal $6 = - 1) Willmore tori in M xf (EC~I) which 
are embedded. 
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This assertion comes easily from Theorem 16 combined with the following new ingre- 
dient. A very classical result of Lustemik and Schnirelmann, [ 191 guarantees the existence 
of at least three geodesics without self-intersections on any simply connected Riemannian 
surface M. That means that (M, ( l/f2)g) has at least three closed geodesics without self- 
intersections, which we will denote by yi, i = 1,2,3. Then Ni = yi xs (ES’), i = 1, 2. 3, 
are embedded Willmore tori in M x f (ES ' ) . Of course they are minimal (maximal if E = - I ) 

with regard to the pseudo-Riemannian metric ( 1 / f2)g + E dt 2. 
It should be noticed that this is the best possible result. In fact, just choose (M, (1 /f’)g) 

to be an ellipsoid. Then it has exactly three embedded closed geodesics. In this case we can 
obtain exactly three conformal minimal (maximal) Willmore tori in M xf (ES') which are 
embedded. Actually, we can obtain infinitely many others immersed Willmore tori. 

We also observe that we have essentially covered the whole space of metrics on M. 
Indeed, a nice consequence of the uniformization theorem for Riemann surfaces ensures 
the existence of exactly one conformal structure and therefore only one conformal class of 
metrics. 

Finally, recall that compact minimal (maximal) surfaces are always Willmore surfaces 
only if the ambient space has constant sectional curvature. 
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